In recent years, researchers have used bionanotechnology techniques as costeffective and eco-friendly routes to fabricate nanoparticles. The present study confirms the ability of aqueous extract of Falcaria vulgaris for the biosynthesis of iron nanoparticles (FeNPs@F. vulgaris). Also, in this study, we showed the antioxidant, cytotoxicity, cutaneous wound healing, antibacterial, and antifungal activities of these nanoparticles. FeNPs@F. vulgaris were characterized by UV, FT-IR, XRD, FE-SEM, and TEM analysis. According to the XRD analysis, 25.3 nm was measured for the crystal size of nanoparticles. FE-SEM and TEM images exhibited a uniform spherical morphology and average diameters of 25 nm for the biosynthesized nanoparticles. FTIR results offered protein and polysaccharides in F. vulgaris were the sources of reducing power, reducing iron ions to FeNPs@F. vulgaris. In vivo design, FeNPs@F. vulgaris ointment remarkably reduced (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and substantially increased (p ≤ 0.01) the wound contracture, vessel, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups in rats. Also, FeNPs@F.vulgaris indicated potential antioxidant activity against DPPH, antifungal potentials against Candida glabrata, Candida albicans, Candida krusei, and Candida guilliermondii, antibacterial properties against Gram-positive bacteria (Streptococcus pneumonia, Staphylococcus aureus, and Bacillus subtilis) and Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa, and Escherichia coli O157:H7) without any cytotoxicity effect against human umbilical vein endothelial cells. Finally, the results showed the useful antioxidant, non-cytotoxic, cutaneous wound healing, antifungal, and antibacterial effects of FeNPs@F. vulgaris.