This study aims to study the photodegradation process of methylene blue using a synthetic chitosan-Fe2O3 composite and their characterization. Based on the characterization material synthetic, chitosan-Fe2O3 (1:1) composite showed the best material with the smallest crystal size (1.13 nm), the surface morphology was lumpy and had an uneven shape with the composition of the constituent (Carbon (C) 42.88%, Oxygen (O) 48.68%, and Iron (Fe) 29.90%), and showed the smallest energy band gap (1.41 eV) which led us to conclude that the formation of the chitosan-Fe2O3 composite can reduce the energy band gap of Fe2O3. The best composite material then was used to evaluate the activity in degrading methylene blue. The optimum condition in degrading was reached at a contact time of 180 min and pH 9 with a percentage decrease in methylene blue concentration of 90.00%. The effect of concentration variations occurred at 5 ppm with a decrease of 89.62%. Total organic carbon analysis showed that the decrease in methylene blue concentration reached 92.20%. Based on that, it is concluded that the chitosan-Fe2O3 composite could be a potential alternative material to degrade methylene blue.