The study brings together in a single publication the phase-space projection analysis of microwave-assisted synthesis of transition monometallic (palladium, silver, platinum, and gold), binary zinc oxide, and metals supported on carbon framework nanostructures. It is shown for a database of fifty microwave-assisted syntheses, a two-variable power-law signature (y = cxn) over four orders of magnitude. The purpose of this study is therefore to identify the underlying dynamics of the power-law signature. A dual allometry test is used to discriminate between transition metal period and row, and between recommended Green Chemistry, problematic Green Chemistry, and non-Green Chemistry hazardous solvents. Typically, recommended Green Chemistry exhibits a broad y-axis distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and a lower exponent = 0.64. Non-Green Chemistry hazardous data shows a further narrowing of the y-axis distribution within upper exponent = 0.87 and lower exponent = 0.66. Mass-based environmental factor is used to calculate the ‘Greenness’ of single-step (facile) transition metal synthesis. The power-law signature also exhibits phase transitions associated with microwave applicator type.