A novel application of the Pistacia integerrima gall extract as an environmentally friendly corrosion inhibitor is reported in this study. The major phytochemicals present in the gall extract, namely pistagremic acid, β-sitosterol, pistiphloroglucinyl ether, pistaciaphenyl ester, naringenin, and 5,7-dihydroxy-2-(4hydroxyphenyl)-2,3-dihydrochromen-4-one, play key roles in its anticorrosive behavior on steel in aggressive media. Several approaches were used to study the corrosion prevention activity of steel in 1 M H 2 SO 4 , including weight loss analysis, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and density functional theory (DFT). At 2000 mg L −1 , the highest efficiency of 92.19% was observed in 1 M H 2 SO 4 . An SEM study was conducted to validate the surface coverage of the metal surface. DFT studies revealed several nucleophilic regions present in the phytochemicals of the inhibitor, which supported the favorable nucleophilicity. Corrosion studies have not been performed on this sample. Phytochemicals make it an effective corrosion inhibitor, and its extraction process utilizes distilled water, making it better than other inhibitors. It has been proven that the obtained values of ΔE Inh DFT for pistiphloroglucinyl, pistaciaphenyl ether, and naringenin organic compounds were very low, confirming the high reactivity of these corrosion inhibitors. The order of the values of ΔE Inh DFT is as follows: pistaciaphenyl ether > pistiphloroglucinyl ether > naringenin organic compound; this suggests that pistaciaphenyl ether is more reactive than the other compounds. In this study, P. integerrima gall extract emerges as a novel and highly effective corrosion resistance agent in 1 M H 2 SO 4 , chosen for its relevance to acid pickling and cleaning processes.