Fuzzy Logic - Emerging Technologies and Applications 2012
DOI: 10.5772/35611
|View full text |Cite
|
Sign up to set email alerts
|

Greenhouse Fuzzy and Neuro-Fuzzy Modeling Techniques

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2015
2015
2022
2022

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 12 publications
0
2
0
1
Order By: Relevance
“…Fuzzifier merupakan proses mengubah nilai variabel (nilai tajam) menjadi variable nilai fuzzy yang kompleks menggunakan fungsi keanggotaan [16]. Proses Defuzzifikasi merupakan proses kompleks untuk mengubah keluaran fuzzy yang diperoleh ke nilai sebenarnya [17][18] [19].…”
Section: Fuzzy Logicunclassified
“…Fuzzifier merupakan proses mengubah nilai variabel (nilai tajam) menjadi variable nilai fuzzy yang kompleks menggunakan fungsi keanggotaan [16]. Proses Defuzzifikasi merupakan proses kompleks untuk mengubah keluaran fuzzy yang diperoleh ke nilai sebenarnya [17][18] [19].…”
Section: Fuzzy Logicunclassified
“…In the study [12], an Elman structure [13,14] is used as the basis for a recurrent neural network that is programmed to imitate greenhouse dynamics directly. The presentation [15] deals with the use of fuzzy cmeans clustering to build a fuzzy greenhouse climate model is compared against an artificial neural network (ANN) model and an adaptive neuro-fuzzy inference system (ANFIS) model. The authors use the adaptive neuro-fuzzy inference system to present a representation of the greenhouse design and control in the study [16].…”
Section: Introductionmentioning
confidence: 99%
“…In [12], a recurrent neural network based on an Elman structure [13][14] is trained to emulate the direct dynamics of the greenhouse. In [15] the construction of fuzzy systems by fuzzy c-means for modeling www.ijacsa.thesai.org a greenhouse climate is described then the comparison with adaptive neuro-fuzzy inference system (ANFIS) and neural networks have presented. In [16] the authors have described the Greenhouse Design and Control using the adaptive neurofuzzy inference system.…”
Section: Introductionmentioning
confidence: 99%