The western flower thrips, Frankliniella occidentalis, is a serious pest causing both direct feeding damage and indirect harm by transmitting the tomato spotted wilt virus. A spraying double‐stranded RNA (dsRNA) targeted at the vacuolar‐type ATPase (vATPase) gene was developed and demonstrated high insecticidal activity in the laboratory but less effective in field applications. To improve control efficacy under field conditions, three strategies were explored in this study. First, to identify a more efficient RNA interference (RNAi) target, dsRNA specific to the Snf7 gene was tested alongside dsRNA targeting vATPase, and both were found to be similarly effective in controlling the thrips. Second, to elucidate the factors contributing to dsRNA resistance, dsRNA‐degrading enzymes were annotated and their physiological roles in diminishing RNAi efficacy were investigated. Third, to suppress the dsRNA degradation from the dsRNase activities and protect it in field conditions, the dsRNA was encapsulated with chitosan. This formulation enhanced the dsRNA's resistance to environmental stressors such as ultraviolet light and the digestive enzymes in the thrips' gut. Additionally, the chitosan formulation specifically increased the RNAi efficacy, likely by facilitating more efficient entry into the target cells, thus bolstering the insecticidal activity of the dsRNA. The formulated dsRNA was applied on F. occidentalis infesting the hot peppers in a greenhouse at a concentration of 500 ppm, demonstrating an 82.4% control efficacy compared with 59.2% control efficacy observed with the application of naked dsRNA. This study further demonstrated an enhancement in the spectrum of control by combining dsRNAs specific to three distinct thrips species, while the mixture showed no adverse effects on non‐target insects, such as the lepidopteran Spodoptera exigua. Collectively, these findings reveal that the chitosan formulation of dsRNA not only improves control efficacy under field conditions but also broadens the control spectrum against three different thrips pests.