Remote photoplethysmography (rPPG) enables non-invasive monitoring of circulatory signals using mobile devices, a crucial advancement in biosensing. Despite its potential, ensuring signal quality amidst noise and artifacts remains a significant challenge, particularly in healthcare applications. Addressing this, our study focuses on a singular signal quality index (SQI) for rPPG, aimed at simplifying high-quality video capture for heart rate detection and cardiac assessment. We introduce a practical threshold for this SQI, specifically the signal-to-noise ratio index (NSQI), optimized for straightforward implementation on portable devices for real-time video analysis. Employing (NSQI < 0.293) as our threshold, our methodology successfully identifies high-quality cardiac information in video frames, effectively mitigating the influence of noise and artifacts. Validated on publicly available datasets with advanced machine learning algorithms and leave-one-out cross-validation, our approach significantly reduces computational complexity. This innovation not only enhances efficiency in health monitoring applications but also offers a pragmatic solution for remote biosensing. Our findings constitute a notable advancement in rPPG signal quality assessment, marking a critical step forward in the development of remote cardiac monitoring technologies with extensive healthcare implications.