Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Large-scale climate processes such as the Indian Ocean Dipole (IOD) have significant roles in modulating rainfall and hydrological systems. Understanding such processes can inform adaptation measures for climate change and variability, as well as water resource management and planning. This study investigated the impact of the Indian Ocean Dipole (IOD) on rainfall and discharge variability in the Dwangwa River Basin (DRB) in Malawi, a key inflow to Lake Malawi. Specifically, the study analysed annual rainfall variability trends from 1985 to 2015 using the Coefficient of Variation (CV) and the annual Precipitation Concentration Index (PCI). The significance and direction of rainfall and discharge trends were quantified using the Mann–Kendall trend test at α = 0.05 significance level. To evaluate the association between rainfall and IOD, the Pearson product moment used three IOD phases: positive, negative, and neutral. Simple linear regression was utilised to check the response of the river during the concerned IOD phases. The study found CVs between 20 and 30%, typical of climates with moderate monthly rainfall variability. The PCI ranged from 20 to 30%, suggesting a strongly seasonal and highly variable temporal intra-annual rainfall distribution in the DRB. Moreover, the Mann–Kendall test statistics showed insignificant decrease in annual rainfall trends. Further, the findings demonstrated an insignificant negative correlation between rainfall and positive IOD, with rainfall increases associated with negative IOD, whereas positive IOD is associated with decreased river discharge. Consequently, El Niño and a positive IOD could cause DRB to have low water availability. Therefore, the study demonstrates that rainfall is experiencing a decreasing trend, which is driven by large-scale mechanics.
Large-scale climate processes such as the Indian Ocean Dipole (IOD) have significant roles in modulating rainfall and hydrological systems. Understanding such processes can inform adaptation measures for climate change and variability, as well as water resource management and planning. This study investigated the impact of the Indian Ocean Dipole (IOD) on rainfall and discharge variability in the Dwangwa River Basin (DRB) in Malawi, a key inflow to Lake Malawi. Specifically, the study analysed annual rainfall variability trends from 1985 to 2015 using the Coefficient of Variation (CV) and the annual Precipitation Concentration Index (PCI). The significance and direction of rainfall and discharge trends were quantified using the Mann–Kendall trend test at α = 0.05 significance level. To evaluate the association between rainfall and IOD, the Pearson product moment used three IOD phases: positive, negative, and neutral. Simple linear regression was utilised to check the response of the river during the concerned IOD phases. The study found CVs between 20 and 30%, typical of climates with moderate monthly rainfall variability. The PCI ranged from 20 to 30%, suggesting a strongly seasonal and highly variable temporal intra-annual rainfall distribution in the DRB. Moreover, the Mann–Kendall test statistics showed insignificant decrease in annual rainfall trends. Further, the findings demonstrated an insignificant negative correlation between rainfall and positive IOD, with rainfall increases associated with negative IOD, whereas positive IOD is associated with decreased river discharge. Consequently, El Niño and a positive IOD could cause DRB to have low water availability. Therefore, the study demonstrates that rainfall is experiencing a decreasing trend, which is driven by large-scale mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.