Renewable distributed generation and electric vehicles (EVs) are two important components in the transition to a more sustainable society. However, both pose new challenges to the power system due to the intermittent generation and EV charging load. In this case study, a power system consisting of a low-and medium-voltage rural and urban distribution grid with 5174 customers, high penetration of photovoltaic (PV) electricity and a fully electrified car fleet were assumed, and their impact on the grid was assessed. The two extreme cases of two summer weeks and two winter weeks with and without EV charging and a PV penetration varying between 0% and 100% of the annual electricity consumption were examined. Active power curtailment of the PV systems was used to avoid overvoltage. The results show an increased electricity consumption of 9.3% in the winter weeks and 17.1% in the summer weeks, a lowering of the minimum voltage by one percent at the most, and a marginal contribution by the EV charging to lower the need of PV power curtailment. This shows the minor impact of EV charging on the distribution grid, both in positive terms of allowing more PV power generation, and in negative terms of lower voltage levels.