2021 29th Signal Processing and Communications Applications Conference (SIU) 2021
DOI: 10.1109/siu53274.2021.9477918
|View full text |Cite
|
Sign up to set email alerts
|

GRJointNET: Synergistic Completion and Part Segmentation on 3D Incomplete Point Clouds

Abstract: Özetçe -Üç boyutlu (3B) nokta bulutları üzerinde bölütleme yapmak, otonom sistemler için önemli ve gerekli bir işlemdir. Bölütleme algoritmalarının başarısı, üzerinde işlem yapılan nokta bulutlarının niteligine (çözünürlük, tamlık vb.) baglıdır. Dolayısıyla, nokta bulutundaki mevcut eksiklikler, nokta bulutu tabanlı uygulamaların başarısını düşürmektedir. Bu konuda, güncel bir çalısma olan GRNet, eksik nokta bulutlarını tamamlamaya odaklanan başarılı bir algoritmadır, ancak bölütleme yetenegi yoktur. Biz bu ça… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 26 publications
0
1
0
Order By: Relevance
“…To automatically extract the UAV inspection target points, the corresponding locations need to be found first, and then the segmentation is accomplished by using a deep learning point cloud segmentation algorithm with specific dataset training. In the field of deep learning, there are various public datasets adapted to different needs, among which the ShapeNet dataset [16] is widely used for testing part segmentation [17][18][19]. For research on using point cloud data for segmentation tasks, there are three main types of segmentation: projected image-based segmentation, voxel-based segmentation, and direct point-based segmentation [20,21].…”
Section: Introductionmentioning
confidence: 99%
“…To automatically extract the UAV inspection target points, the corresponding locations need to be found first, and then the segmentation is accomplished by using a deep learning point cloud segmentation algorithm with specific dataset training. In the field of deep learning, there are various public datasets adapted to different needs, among which the ShapeNet dataset [16] is widely used for testing part segmentation [17][18][19]. For research on using point cloud data for segmentation tasks, there are three main types of segmentation: projected image-based segmentation, voxel-based segmentation, and direct point-based segmentation [20,21].…”
Section: Introductionmentioning
confidence: 99%