Previously, we elucidated the intracellular mechanisms by which neutrophil elastase (NE) up-regulates inflammatory gene expression in bronchial epithelial cells. In this study, we examine the effects of both IL-1 and NE on inflammatory gene expression in 16HBE14o− bronchial epithelial cells and investigate approaches to abrogate these inflammatory responses. IL-1 induced IL-8 protein production in time- and dose-dependent fashions, an important observation given that IL-8 is a potent neutrophil chemoattractant and a key inflammatory mediator. IL-1 and NE were shown to activate the p38 MAPK pathway in 16HBE14o− cells. Western blot analysis demonstrated IL-1R-associated kinase 1 (IRAK-1) degradation in response to stimulation with both IL-1 and NE. In addition, the expression of dominant negative IRAK-1 (IRAK-1Δ), IRAK-2Δ, or IRAK-4Δ inhibited IL-1- and NE-induced NF-κB-linked reporter gene expression. Dominant negative versions of the intracellular adaptor proteins MyD88 (MyD88Δ) and MyD88 adaptor-like (Mal P/H) abrogated NE-induced NF-κB reporter gene expression. In contrast, only MyD88Δ was found to inhibit IL-1-induced NF-κB reporter activity. We also investigated the vaccinia virus proteins, A46R and A52R, which have been shown to antagonize IL-1 signaling. Transfection with A46R or A52R cDNA inhibited IL-1- and NE-induced NF-κB and IL-8R gene expression and IL-8 protein production in primary and transformed bronchial epithelial cells. Furthermore, cytokine array studies demonstrated that IL-1 and NE can up-regulate the expression of IL-6, oncostatin M, epithelial cell-derived neutrophil activating peptide-78, growth-related oncogene family members, vascular endothelial growth factor, and GM-CSF, with induction of these proteins inhibited by the viral proteins. These findings identify vaccinia virus proteins as possible therapeutic agents for the manifestations of several inflammatory lung diseases.