“…The methods for solving the abovementioned problems can be broadly divided into four categories: (1) enhancement of the precision of SWD using the "zero differences" (ZDs) technique (Alber et al, 2000;Seko et al, 2004); (2) addition of constraint conditions to tomographic models, e.g., horizontal, vertical, and boundary constraint conditions (Flores et al, 2000;Hirahara, 2000;Perler, 2011;Rohm and Bosy, 2009;Seko et al, 2000;Song et al, 2006); (3) usage of additional extra observations through RINEX met files, zenith wet delay, WVR, RS, and voxel-optimized regional water vapor tomography (Bi et al, 2006;Chen and Liu, 2014;Jiang et al, 2014;Rocken et al, 1993;Rohm et al, 2014;Yao et al, 2016); and (4) new algorithms to improve inversion quality, such as singular value decomposition (SVD), the wet refractivity Kalman filter (KF), algebraic reconstruction techniques (ARTs), and the parameterization of voxels (volumetric pixels) based on trilinear and spline functions (Bender et al, 2011;Flores et al, 2001;Gradinarsky, 2002;Gradinarsky and Jarlemark, 2004;Nilsson and Gradinarsky, 2006;Rohm et al, 2013;Shangguan et al, 2013). At present, we are focused on replacing divided voxel-based traditional methods with new, parameterized approaches.…”