Wireless communication networks are increasingly based on the ubiquitous multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) modulation scheme. Their channel state information is generally obtained each time by a base station receiver as soon as a data packet is successfully received from a mobile device. As it has been shown recently that the MIMO-OFDM channel state information can be used for angle of arrival-based localization, this paper presents a theoretical investigation of the localization performance. The method of computing the Cramer-Rao lower bound, which represents the performance of a minimum variance unbiased estimator, is presented and then used for insightful investigation purposes by means of inspecting the viability of the system requirements and the design properties.