In some subsurface urban development projects, bedrock faults intersecting with the tunnel path are inevitable. Due to the high costs of urban tunnel projects, it is necessary to study the behavior of such concrete structures under fault movement risks. Using an advanced 3D numerical finite difference code and a plastic hardening constitutive model for the soil, this paper examined the performance of the straight and oblique segmented structures of Tabriz Subway Line 2 under large deformations. The Tabriz Line 2 tunnel passes through a reverse fault called the Baghmisheh Fault. The fault–tunnel simulations were validated by centrifuge tests on the segmental tunnel for normal faulting. In the centrifuge tests and validation models, there was a maximum difference of 15%. According to the results of the Tabriz Line 2 tunnel under reverse faulting, segmental structures outperform no-joint linings when it comes to fault movement. During reverse fault movement, line 2 segments did not collapse but showed slight deformations. However, continuous structures collapsed under faulting, i.e., the structural forces created exceeded the section strength capacity. Among the segmental structures, the lining with oblique joints showed better behavior against faulting than the lining with straight joints. For better tunnel performance under fault movement, oblique joints should be used in segmental structures in faulting areas.