Based on the triaxial test, the elasto-perfectly plastic strain-softening damage model (EPSDM) is proposed as a new four-stage constitutive model. Compared with traditional models, such as the elasto-brittle-plastic model (EBM), elasto-strain-softening model (ESM), elasto-perfectly plastic model (EPM), and elasto-peak plastic-brittle plastic model (EPBM), this model incorporates both the plastic bearing capacity and strain-softening characteristics of rock mass. Moreover, a new closed-form solution of the circular tunnel is presented for the stress and displacement distribution, and a plastic shear strain increment is introduced to define the critical condition where the strain-softening zone begins to occur. e new analysis solution obtained in this paper is a series of results rather than one specific solution; hence, it is suitable for a wide range of rock masses and engineering structures. e numerical simulation has been used to verify the correctness of the EPSDM. e parametric studies are also conducted to investigate the effects of supporting resistance, residual cohesion, dilation angle, strain-softening coefficient, plastic shear strain increment, and yield parameter on the result. It is shown that when the supporting resistance is fully released, both the post-peak failure radii and surface displacement could be summarized as EBM > EPBM > ESM > EPSDM > EPM; the dilation angle in the damage zone had the highest influence on the surface displacement, whereas the dilation angle in the perfectly plastic zone had the lowest influence; the strainsoftening coefficient had the most significant effect on the damage zone radii; the EPSDM is recommended as the optimum model for support design and stability evaluation of the circular tunnel excavated in the perfectly plastic strain-softening rock mass.