In this work, we theoretically study a modified Su-Schrieffer-Heeger (SSH) model in which each unit cell consists of three sites. Unlike existing extensions of the SSH model which are made by enlarging the periodicity of the (nearest-neighbor) hopping amplitudes, our modification is obtained by replacing the Pauli matrices in the system’s Hamiltonian by their higher dimensional counterparts. This, in turn, leads to the presence of next-nearest neighbor hopping terms and the emergence of different symmetries than those of other extended SSH models. Moreover, the system supports a number of edge states that are protected by a combination of particle-hole, time-reversal, and chiral symmetry. Finally, our system could be potentially realized in various experimental platforms including superconducting circuits as well as acoustic/optical waveguide arrays.