In the present paper, we deal with the following
Kirchhoff-Schr\”{o}dinger-Poisson system with
logarithmic and critical nonlinearity:
\begin{equation*} \begin{array}{ll}
\left \{
\begin{array}{ll}
\ds\B(a+b\int_\Omega|\nabla
u|^2\mathrm{d}x
\B)\Delta
u+V(x)u-\frac{1}{2}u\Delta
(u^2)+\phi u=\lambda
|u|^{q-2}u\ln|u|^2+|u|^4u,
&x\in \Omega,
\\ -\Delta
\phi=u^2,& x\in \Omega,
\\ u=0,& x\in
\R^3\setminus\Omega,
\end{array} \right .
\end{array} \end{equation*} where
$\lambda,b>0,a>\frac{1}{4},4