In the present paper, we consider the following singularly perturbed problem: $$ \textstyle\begin{cases} -\varepsilon ^{2}\Delta u+V(x)u-\varepsilon ^{2}\Delta (u^{2})u= \varepsilon ^{-\alpha }(I_{\alpha }*G(u))g(u), \quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases} $$
{
−
ε
2
Δ
u
+
V
(
x
)
u
−
ε
2
Δ
(
u
2
)
u
=
ε
−
α
(
I
α
∗
G
(
u
)
)
g
(
u
)
,
x
∈
R
N
;
u
∈
H
1
(
R
N
)
,
where $\varepsilon >0$
ε
>
0
is a parameter, $N\ge 3$
N
≥
3
, $\alpha \in (0, N)$
α
∈
(
0
,
N
)
, $G(t)=\int _{0}^{t}g(s)\,\mathrm{d}s$
G
(
t
)
=
∫
0
t
g
(
s
)
d
s
, $I_{\alpha }: \mathbb{R}^{N}\rightarrow \mathbb{R}$
I
α
:
R
N
→
R
is the Riesz potential, and $V\in \mathcal{C}(\mathbb{R}^{N}, \mathbb{R})$
V
∈
C
(
R
N
,
R
)
with $0<\min_{x\in \mathbb{R}^{N}}V(x)< \lim_{|y|\to \infty }V(y)$
0
<
min
x
∈
R
N
V
(
x
)
<
lim
|
y
|
→
∞
V
(
y
)
. Under the general Berestycki–Lions assumptions on g, we prove that there exists a constant $\varepsilon _{0}>0$
ε
0
>
0
determined by V and g such that for $\varepsilon \in (0,\varepsilon _{0}]$
ε
∈
(
0
,
ε
0
]
the above problem admits a semiclassical ground state solution $\hat{u}_{\varepsilon }$
u
ˆ
ε
with exponential decay at infinity. We also study the asymptotic behavior of $\{\hat{u}_{\varepsilon }\}$
{
u
ˆ
ε
}
as $\varepsilon \to 0$
ε
→
0
.