Projected global change includes groundwater systems, which are linked with changes in climate over space and time. Consequently, global change affects key aspects of subsurface hydrology (including soil water, deeper vadose zone water, and unconfined and confined aquifer waters), surface-groundwater interactions, and water quality. Research and publications addressing projected climate effects on subsurface water are catching up with surface water studies. Even so, technological advances, new insights and understanding are needed regarding terrestrial-subsurface systems, biophysical process interactions, and feedbacks to atmospheric processes. Importantly, groundwater resources need to be assessed in the context of atmospheric CO 2 enrichment, warming trends and associated changes in intensities and frequencies of wet and dry periods, even though projections in space and time are uncertain. Potential feedbacks of groundwater on the global climate system are largely unknown, but may be stronger than previously assumed. Groundwater has been depleted in many regions, but management of subsurface storage remains an important option to meet the combined demands of agriculture, industry (particularly the energy sector), municipal and domestic water supply, and ecosystems. In many regions, groundwater is central to the water-food-energy-climate nexus. Strategic adaptation to global change must include flexible, integrated groundwater management over many decades. Adaptation itself must be adaptive over time. Further research is needed to improve our understanding of climate and groundwater interactions and to guide integrated groundwater management.