Abstract. Despite many existing approaches, modeling karst water resources remains challenging and often requires solid system knowledge. Artificial Neural Network approaches offer a convenient solution by establishing a simple input-output relationship on their own. However, in this context, temporal and especially spatial data availability is often an important constraint, as usually no or few climate stations within a karst spring catchment are available. Hence spatial coverage is often unsatisfying and can introduce severe uncertainties. To avoid these problems, we use 2D-Convolutional Neural Networks (CNN) to directly process gridded meteorological data followed by a 1D-CNN to perform karst spring discharge simulation. We investigate three karst spring catchments in the Alpine and Mediterranean region with different meteorologic-hydrological characteristics and hydrodynamic system properties. We compare our 2D-models both to existing modeling studies in these regions and to 1D-models, which use climate station data, as it is common practice. Our results show that our models are excellently suited to model karst spring discharge and rival the simulation results of existing approaches in the respective areas. The 2D-models learn relevant parts of the input data and by performing a spatial input sensitivity analysis we can further show their potential for karst catchment localization and delineation.