A novel method, ECWS, is proposed for measuring soil initial salinity content (b), based on the soil electrical conductivity EC and soil moisture content WS. This pioneering model rigorously establishes and incorporates the inherent potential correlation among soil bulk conductivity (ECa), soil solution conductivity (ECw), volume water content (θc), and soil salinity content (SSC). First of all, in order to delve the deeper relationship between ECa, ECw, θc and SSC, the soil salinity conductivity conversion coefficient ρa and soil leaching solution salinity conductivity conversion coefficient ρw were employed based on the formula of parallel conducting channels of the soil–water system, and a new measurement model of salinity content was constructed. After that, a mathematical analysis method was used to transform the coefficients of multiple sets of regression equations into matrices to solve ρa, ρw and b. Finally, to validate the accuracy of the proposed ECWS method, verification tests were conducted by utilizing TDR and PWMER sensors. The results with different salinity contents showed that the b size obtained by ECWS model were K2SO4 (1.84 g/kg), NaCl (1.91 g/kg), and KCl (1.92 g/kg). The maximum deviation was less than 0.08 g/kg (relative error less than 5%). The results showed that the influence of different anions and cations on the measurement of salinity content Cl− is greater than that of SO42−, and K+ is greater than that of Na+. This study revealed the relationship between soil electrical conductivity and soil salinity content to a certain extent, and realized the transformation between them, which provided a new method for the measurement of soil salinity content, and also provided a reference for related research on the measurement of soil salinization.