The effects of groundwater table fluctuation (GTF) on the remediation of a petrochemically polluted riverside using soil vapor extraction (SVE) were investigated. The migration and transformation of benzene, toluene, ethylbenzene, and o-xylene (BTEX) in cases of natural attenuation, SVE without GTF, and SVE with GTF were simulated using the TMVOC model. The results showed that the optimized extraction well pressure and influencing radius of the target site were 0.90 atm and 8 m, respectively. The removal rates of BTEX in cases of natural attenuation, SVE without GTF, and SVE with GTF were 11.49%, 85.16%, and 97.33%, respectively. The removal rate of BTEX was maximized in the case of SVE with a GTF amplitude of 0.5 m to 1 m. The removal rates of benzene (99.99%), toluene (99.74%), ethylbenzene (96.37%), and o-xylene (94.72%) were maximized in the case of SVE with GTF. For the cases of SVE without GTF and SVE with GTF, mass losses of BTEX in gaseous (0.05 kg, 0.05 kg, respectively) and aqueous phases (5.46 kg, 5.87 kg, respectively) were consistent. However, the mass loss of BTEX in the non-aqueous phase liquid (NAPL) phase in the case of SVE with GTF (155.13 kg) exceeded that in the case of SVE without GTF (135.41 kg). This is because GTF positively affected both the solubility and volatility of BTEX in the NAPL phase. With the groundwater table decreasing, flows of gas and gaseous pollutants increased by 25% along the vertical section. At this stage, the removal rates of volatile organic compounds can be further improved by increasing the flow of the extraction well.