Aptamers are short, single-stranded oligonucleotides that selectively bind to target biomolecules. Although they generally exhibit good binding specificity, their affinities are often limited because of the relative lack of hydrophobic groups in nucleic acids. Chemically modified nucleotides incorporating hydrophobic structures into uracil have been synthesized to address this obstacle. Modified DNA aptamers containing such nonstandard nucleotides have been developed for >20 different complement proteins. These modified aptamers show increased affinity and enhanced serum stability and have potential value as therapeutic agents. We recently conducted a structure/function study on a family of modified DNA aptamers that bind specifically to complement Factor B (FB). This work revealed that these aptamers selectively inhibit the complement alternative pathway (AP) by preventing the formation of the AP complement component C3 (C3) proconvertase complex, C3bB. Certain patients with atypical hemolytic uremic syndrome express gain-of-function variants of FB that enhance the formation of the proconvertase complex and/or decrease the efficacy of endogenous regulators against the C3 convertases they form. To investigate whether these FB-binding aptamers could override the effects of disease-causing mutations in FB, we examined how they interacted with several FB variants, including D279G, F286L, K323E, and K350N, in various assays of complement function. We found that the inhibitory effect of the FB-binding aptamers superseded the gain-of-function mutations in FB, although the aptamers could not dissociate preformed C3 convertases. These findings suggest that FB-binding aptamers could be further developed as a potential treatment for certain atypical hemolytic uremic syndrome patients or those with other diseases characterized by excessive complement activity.