2018
DOI: 10.1002/jcd.21607
|View full text |Cite
|
Sign up to set email alerts
|

Group divisible designs with block size 4 and type

Abstract: Building upon the work of Wei and Ge (Designs, Codes, and Cryptography 74, 2015), we extend the range of positive integer parameters g, u, and m for which group divisible designs with block size 4 and type gum1 are known to exist. In particular, we show that the necessary conditions for the existence of these designs when m>0 and m≠g are sufficient in the following cases: g≡0( mod 6), g=2 with one exception, 2651, g=10, and g=11.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
65
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
5

Relationship

3
2

Authors

Journals

citations
Cited by 14 publications
(65 citation statements)
references
References 21 publications
0
65
0
Order By: Relevance
“…18 36 21 4 (1,6,77,126), (0, 1, 3, 99), (0, 2, 37, 83), (0, 6, 61, 101), (0, 5, 31, 95), (0, 7, 33, 103), (0, 10, 47, 107), FORBES | 329 (1,10,35,83), (0, 13, 54, 75), (0, 42, 63, 89), (1,39,91,113), (1,55,103,127), (1,43,89,114), (0, 26, 77, 113), (1,22,23,97), (1,50,81,121), (0, 51, 81, 114), (2,55,104,128), (0, 15, 17, 82), (0, 22, 41, 71), (0, 30, 43, 84), (1,51,58,84), (0, 59, 65, 76), (0, 50, 57, 90), (0, 18, 35, 98), (1,34,63,92), (2,47,74,120), (1,2,11,78), (0, 62, 67, 88), (0, 58, 69, 100), (0, 46, 106, 128), (0, 38, 78, 127), (0, 25, 102, 120), (0, 45, 94, 121 18, ((72, 4), (36, 2), (21, 7)))), ((18, 4), (36, 1), (21, 1))). (112,78,9,…”
Section: 21mentioning
confidence: 99%
See 3 more Smart Citations
“…18 36 21 4 (1,6,77,126), (0, 1, 3, 99), (0, 2, 37, 83), (0, 6, 61, 101), (0, 5, 31, 95), (0, 7, 33, 103), (0, 10, 47, 107), FORBES | 329 (1,10,35,83), (0, 13, 54, 75), (0, 42, 63, 89), (1,39,91,113), (1,55,103,127), (1,43,89,114), (0, 26, 77, 113), (1,22,23,97), (1,50,81,121), (0, 51, 81, 114), (2,55,104,128), (0, 15, 17, 82), (0, 22, 41, 71), (0, 30, 43, 84), (1,51,58,84), (0, 59, 65, 76), (0, 50, 57, 90), (0, 18, 35, 98), (1,34,63,92), (2,47,74,120), (1,2,11,78), (0, 62, 67, 88), (0, 58, 69, 100), (0, 46, 106, 128), (0, 38, 78, 127), (0, 25, 102, 120), (0, 45, 94, 121 18, ((72, 4), (36, 2), (21, 7)))), ((18, 4), (36, 1), (21, 1))). (112,78,9,…”
Section: 21mentioning
confidence: 99%
“…With the point set Z 96 partitioned into residue classes modulo 6 for {0, 1,…, 53}, {54, 55,…, 80} and {81, 82,…, 95}, the design is generated from (81,54,15,49), (82, 54, 0, 43), (83,54,25,47), (84,54,36,19), (85, 54, 51, 34), (86, 54, 52, 44), (87, 54, 24, 17), (88, 54, 22, 29), (0, 1, 62, 86), (0, 3, 60, 92), (0, 2, 68, 88), (0, 4, 14, 73), (0, 5, 9, 79), (0, 13, 22, 61), (0, 41, 74, 89), (0, 51, 76, 94), (0, 33, 57, 95), (0, 25, 65, 85), (1,11,39,71), (0, 23, 28, 72), (0, 15, 16, 56), (0, 27, 29, 78), (0, 11, 19, 34), (0, 21, 35, 80 (1,66,83,160), (2,51,71,138), (0, 29, 99, 140), (0, 75, 94, 158), (0, 63, 77, 136), (1,2,39,156), (0, 5, 91, 142), (0, 15, 43, 157), (0, 55, 71, 143), (1,11,42,127), (2,15,78,151), (0, 41, 67, 111), (0, 39, 40, 139), (0, 74, 79, 81), (1,6,15,113), (0, 27, 50, 147), (0, 9, 44, 155), (0, 37, 86, 137), (1, 33, 106, 125), (0, 26, 106, 113), (0, 33, 61, 109), (1,10,14,137), (0, 53, 105, 141), (2,10,66,141)…”
Section: 15 6 1mentioning
confidence: 99%
See 2 more Smart Citations
“…For type 40um1, (u,m)goodbreakinfix∈{(6,85),(9,145)}, use Theorem with a 4‐GDD of type 8u(m5)1. For type 40um1, where ugoodbreakinfix=6 and mgoodbreakinfix∈{73,79,82,91,94,97}, or ugoodbreakinfix=9 and mgoodbreakinfix∈{139,142,151,154,157}, see Lemma . bold-italicggoodbreakinfix=bold44 For type 446m1, mgoodbreakinfix∈{5,8}, see [, Lemma 2.8]. For type 44um1, ugoodbreakinfix∈{9,15,18}, mgoodbreakinfix≤ugoodbreakinfix−1, take a 4‐DGDD of type (44,222)u, adjoin m points and overlay the holes plus the new points with 4‐GDDs of type 2um1.…”
Section: ‐Gdds Of Type Gum1 With Ggoodbreakinfix≡2goodbreakinfix40mentioning
confidence: 99%