Previously, we reported that although the Arabidopsis (Arabidopsis thaliana) Xyloglucan Endotransglucosylase-Hydrolase31 (XTH31) has predominately xyloglucan endohydrolase activity in vitro, loss of XTH31 results in remarkably reduced in vivo xyloglucan endotransglucosylase (XET) action and enhanced Al resistance. Here, we report that XTH17, predicted to have XET activity, binds XTH31 in yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitations assays and that this interaction may be required for XTH17 XET activity in planta. XTH17 and XTH31 may be colocalized in plant cells because tagged XTH17 fusion proteins, like XTH31 fusion proteins, appear to target to the plasma membrane. XTH17 expression, like that of XTH31, was substantially reduced in the presence of aluminum (Al), even at concentrations as low as 10 mM for 24 h or 25 mM for just 30 min. Agrobacterium tumefaciensmediated transfer DNA insertion mutant of XTH17, xth17, showed low XET action and had moderately shorter roots than the wild type but was more Al resistant than the wild type. Similar to xth31, xth17 had low hemicellulose content and retained less Al in the cell wall. These data suggest a model whereby XTH17 and XTH31 may exist as a dimer at the plasma membrane to confer in vivo XET action, which modulates cell wall Al-binding capacity and thereby affects Al sensitivity in Arabidopsis.Soil acidity (pH , 5.5) affects about 40% of the world's arable land (von Uexküll and Mutert, 1995) and more than 50% of land that is potentially arable, particularly in the tropics and subtropics (Kochian et al., 2004;Eticha et al., 2010). Al is the most growth-limiting factor for crop production on acid soils worldwide (Foy, 1988;Kochian, 1995), especially when the pH drops below 5 (Eswaran et al., 1997).To survive in an Al-toxic environment, Al-resistant plants have evolved two mechanisms to cope with Al toxicity. One is to restrict Al uptake from the root, while the other is to cope with internalized Al (Taylor, 1991;Kochian et al., 2004). The latter is usually employed by Al-accumulating species such as Hydrangea macrophylla (Ma et al., 1997a) and buckwheat (Fagopyrum esculentum; Ma et al., 1997b). In most cases, secretion of the organic acid anions is the most important Al exclusion mechanism (Kochian, 1995;Ryan et al., 2001;Ma and Furukawa, 2003) (Yang et al., 2011a). Therefore, it is possible that for some plant species (such as buckwheat), Al tolerance is a combination of mechanisms including organic anion efflux.Recently, evidence has accumulated that the cell wall, especially the hemicellulose component, may impact Al resistance. For example, Al induces significant changes in the hemicellulose fraction of wheat (Triticum aestivum; Tabuchi and Matsumoto, 2001), triticale (3 Triticosecale Wittmack; Liu et al., 2008), rice , and Arabidopsis (Arabidopsis thaliana; Zhu et al., 2012), especially the Al-sensitive cultivars. Moreover, we found that Arabidopsis hemicellulose is not only very sensitive to Al stress (the content of hemicellulose incr...