The polyphase-with-advance matrix representations of whole-sample symmetric (WS) unimodular filter banks form a multiplicative matrix Laurent polynomial group. Elements of this group can always be factored into lifting matrices with half-sample symmetric (HS) off-diagonal lifting filters; such linear phase lifting factorizations are specified in the ISO/IEC JPEG 2000 image coding standard. Half-sample symmetric unimodular filter banks do not form a group, but such filter banks can be partially factored into a cascade of whole-sample antisymmetric (WA) lifting matrices starting from a concentric, equal-length HS base filter bank. An algebraic framework called a group lifting structure has been introduced to formalize the group-theoretic aspects of matrix lifting factorizations. Despite their pronounced differences, it has been shown that the group lifting structures for both the WS and HS classes satisfy a polyphase order-increasing property that implies uniqueness ("modulo rescaling") of irreducible group lifting factorizations in both group lifting structures. These unique factorization results can in turn be used to characterize the group-theoretic structure of the groups generated by the WS and HS group lifting structures.