Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Fascinating connections exist between group theory and automata theory, and a wide variety of them are discussed in this text. Automata can be used in group theory to encode complexity, to represent aspects of underlying geometry on a space on which a group acts, and to provide efficient algorithms for practical computation. There are also many applications in geometric group theory. The authors provide background material in each of these related areas, as well as exploring the connections along a number of strands that lead to the forefront of current research in geometric group theory. Examples studied in detail include hyperbolic groups, Euclidean groups, braid groups, Coxeter groups, Artin groups, and automata groups such as the Grigorchuk group. This book will be a convenient reference point for established mathematicians who need to understand background material for applications, and can serve as a textbook for research students in (geometric) group theory.
Fascinating connections exist between group theory and automata theory, and a wide variety of them are discussed in this text. Automata can be used in group theory to encode complexity, to represent aspects of underlying geometry on a space on which a group acts, and to provide efficient algorithms for practical computation. There are also many applications in geometric group theory. The authors provide background material in each of these related areas, as well as exploring the connections along a number of strands that lead to the forefront of current research in geometric group theory. Examples studied in detail include hyperbolic groups, Euclidean groups, braid groups, Coxeter groups, Artin groups, and automata groups such as the Grigorchuk group. This book will be a convenient reference point for established mathematicians who need to understand background material for applications, and can serve as a textbook for research students in (geometric) group theory.
We introduce "braided" versions of self-similar groups and Röver-Nekrashevych groups, and study their finiteness properties. This generalizes work of Aroca and Cumplido, and the first author and Wu, who considered the case when the self-similar groups are what we call "self-identical". In particular we use a braided version of the Grigorchuk group to construct a new group called the braided Röver group, which we prove is of type F ∞ . Our techniques involve using so called -ary cloning systems to construct the groups, and analyzing certain complexes of embedded disks in a surface to understand their finiteness properties.
We describe a procedure for constructing a generalized Thompson group out of a family of groups that is equipped with what we call a cloning system. The previously known Thompson groups F , V , V br and F br arise from this procedure using, respectively, the systems of trivial groups, symmetric groups, braid groups and pure braid groups.We give new examples of families of groups that admit a cloning system and study how the finiteness properties of the resulting generalized Thompson group depend on those of the original groups. The main new examples here include upper triangular matrix groups, mock reflection groups, and loop braid groups. For generalized Thompson groups of upper triangular matrix groups over rings of S-integers of global function fields, we develop new methods for (dis-)proving finiteness properties, and show that the finiteness length of the generalized Thompson group is exactly the limit inferior of the finiteness lengths of the groups in the family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.