Using beneficial microorganisms, such as purple non-sulfur bacteria (PNSB), has shown enormous potential for improving plant growth and agricultural production. However, the full extent of their benefits and interactions with agricultural practices is yet to be fully understood. The present study aimed to investigate the use of PNSB in crop rotation practice, focusing on its impact on rice growth and yield. The experiment was conducted over two rice cropping seasons, with djulis grown between the rice as a rotation crop. The study shows that PNSB treatment increased the concentration of 5-aminolevulinic acid (5-ALA) in plants, indicating enhanced photosynthesis. Moreover, when combined with crop rotation, PNSB remarkably improved soil fertility. These combined benefits resulted in substantial increases in tiller numbers (163%), leaf chlorophyll content (13%), and lodging resistance (66%), compared to the untreated plants. The combined treatment also resulted in higher productive tillers per hill (112%), average grain per hill (65%), and grain fertility (26%). This led to increased grain yield (65%), shoot dry weight (15%), and harvest index (37%). The findings clearly suggest that the incorporation of PNSB in crop rotation strategies can significantly augment the growth and yield of rice crops. These insights, pivotal for sustainable rice cultivation, hold the potential to simultaneously tackle the pressing issues of global food security and climate change.