Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Understanding the effects of landscape greening pest control modes (LGPCMs) on carbon storage and soil physicochemical properties is crucial for promoting the sustainable development of urban landscape greening. Climate change and green development have led to increased landscape pest occurrences. However, the impacts of different LGPCMs on carbon storage and soil properties remain unclear. We examined six typical LGPCMs employed in Beijing, China: chemical control (HXFZ), enclosure (WH), light trapping (DGYS), biological agent application (SWYJ), natural enemy release (SFTD), and trap hanging (XGYBQ). Field surveys and laboratory experiments were conducted to analyze their effects on carbon storage and soil physicochemical properties, and their interrelationships. The main results were as follows: (1) Different LGPCMs significantly affected carbon storage in the tree and soil layers (p < 0.05), but not in the shrub and herb layers (p > 0.05). Carbon storage composition across all modes followed the following order: tree layer (64.19%–93.52%) > soil layer > shrub layer > herb layer. HXFZ exhibited the highest tree layer carbon storage (95.82 t/hm2) but the lowest soil layer carbon storage (6.48 t/hm2), while DGYS performed best in the soil, herb, and shrub layers. (2) LGPCMs significantly influenced soil bulk density (SBD), clay (SC), silt particle (SSP), sand (SS), pH, organic carbon (OC), total nitrogen (TN), and heavy metal content (lead (Pb), cadmium (Cd), mercury (Hg)). WH had the highest TN (1.37 g/kg), TP (0.84 g/kg), SC (10.71%) and SSP (42.14%); HXFZ had the highest Cd (8.98 mg/kg), but lowest OC and Pb. DGYS had the highest OC and Hg, and the lowest Cd, SC, and TP. Under different LGPCMs, the heavy metal content in soil ranked as follows: Pb > Cd > Hg. (3) There were significant differences in the relationship between carbon storage and soil physicochemical properties under different LGPCMs. A significant positive correlation was observed between the soil layer carbon storage, TN, and OC, while significant negative correlations were noted between SS and SC as well as SSP. Under SFTD, the tree layer carbon storage showed a negative correlation with Cd, while under DGYS, it correlated negatively with pH and Hg. In summary, While HXFZ increased the short-term tree layer carbon storage, it reduced carbon storage in the other layers and damaged soil structure. Conversely, WH and DGYS better supported carbon sequestration and soil protection, offering more sustainable control strategies. We recommend developing integrated pest management focusing on green control methods, optimizing tree species selection, and enhancing plant and soil conservation management. These research results can provide scientific guidance for collaborative implementation of pest control and carbon sequestration in sustainable landscaping.
Understanding the effects of landscape greening pest control modes (LGPCMs) on carbon storage and soil physicochemical properties is crucial for promoting the sustainable development of urban landscape greening. Climate change and green development have led to increased landscape pest occurrences. However, the impacts of different LGPCMs on carbon storage and soil properties remain unclear. We examined six typical LGPCMs employed in Beijing, China: chemical control (HXFZ), enclosure (WH), light trapping (DGYS), biological agent application (SWYJ), natural enemy release (SFTD), and trap hanging (XGYBQ). Field surveys and laboratory experiments were conducted to analyze their effects on carbon storage and soil physicochemical properties, and their interrelationships. The main results were as follows: (1) Different LGPCMs significantly affected carbon storage in the tree and soil layers (p < 0.05), but not in the shrub and herb layers (p > 0.05). Carbon storage composition across all modes followed the following order: tree layer (64.19%–93.52%) > soil layer > shrub layer > herb layer. HXFZ exhibited the highest tree layer carbon storage (95.82 t/hm2) but the lowest soil layer carbon storage (6.48 t/hm2), while DGYS performed best in the soil, herb, and shrub layers. (2) LGPCMs significantly influenced soil bulk density (SBD), clay (SC), silt particle (SSP), sand (SS), pH, organic carbon (OC), total nitrogen (TN), and heavy metal content (lead (Pb), cadmium (Cd), mercury (Hg)). WH had the highest TN (1.37 g/kg), TP (0.84 g/kg), SC (10.71%) and SSP (42.14%); HXFZ had the highest Cd (8.98 mg/kg), but lowest OC and Pb. DGYS had the highest OC and Hg, and the lowest Cd, SC, and TP. Under different LGPCMs, the heavy metal content in soil ranked as follows: Pb > Cd > Hg. (3) There were significant differences in the relationship between carbon storage and soil physicochemical properties under different LGPCMs. A significant positive correlation was observed between the soil layer carbon storage, TN, and OC, while significant negative correlations were noted between SS and SC as well as SSP. Under SFTD, the tree layer carbon storage showed a negative correlation with Cd, while under DGYS, it correlated negatively with pH and Hg. In summary, While HXFZ increased the short-term tree layer carbon storage, it reduced carbon storage in the other layers and damaged soil structure. Conversely, WH and DGYS better supported carbon sequestration and soil protection, offering more sustainable control strategies. We recommend developing integrated pest management focusing on green control methods, optimizing tree species selection, and enhancing plant and soil conservation management. These research results can provide scientific guidance for collaborative implementation of pest control and carbon sequestration in sustainable landscaping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.