The degradation of the perovskite layer in atmospheric air is a critical bottleneck for the commercialization of perovskite solar cells (PSCs). As the moisture and oxygen in air penetrate the charge transport layer/top metal electrode interface, both adjacent layers and perovskite layers decompose in the PSCs. Herein, moisture‐stable inverted PSCs (I‐PSCs) based on methylammonium lead triiodide (MAPbI3) by introducing amine‐functionalized small molecules as metal adhesive layers (MALs) between the electron transport layer (ETL) and metal electrode (here, Cu) are demonstrated. A strong coordination bond of CuN forms at the Cu/MAL interface, leading to the layer–layer growth mode for the dense formation of Cu electrodes with a strong adhesion to the ETL. Thus, this modified electrode prevents the ingress of moisture into the I‐PSCs, resulting in outstanding moisture stability; the efficiency of I‐PSCs retains 90% of the initial efficiency after 200 days of exposure to atmospheric air (25 °C, relative humidity [RH] ≈20–40%). Under harsher conditions (e.g., 25 °C/RH65%, 25 °C/RH85% and immersion in water) for a considerable time period, the modified I‐PSCs manifest relatively no degradation compared with the pristine I‐PSCs. It is believed that this breakthrough provides a significant impact on improving the stability of I‐PSCs.