Salt stress, which is dominant among environmental stresses, poses challenges to global agriculture. We studied the role of exogenous application of sodium chloride (NaCl) in three arid and three semi-arid genotypes of mungbean [
Vigna radiata
(L.) Wilczek] by examining some physiological and biochemical stress indicators. Ten-day old seedlings were subjected to salt stress (00–250 mM) by split application along with the half strength Hoagland’s medium. The salt stress caused a decline in the fresh weight, dry weight, relative water content, photosynthetic pigments (chlorophyll and carotenoids) and glutathione content of the seedlings. On the other hand, it increased the electrolyte leakage, lipoxygenase activity, and the proline, protein and total soluble sugar contents. Osmolyte accumulation was relatively higher in the arid genotypes revealing that they are more tolerant to NaCl stress. The physiological and biochemical screening provides a basic platform for selecting the stress-tolerant genotypes in the absence of suitable salt-tolerance markers in mungbean.