Application of Bayesian inference to analyze real economic phenomena is rare in the literature on applied economics. This study contributes in two ways. Firstly, it contributes to methodological advancement in the literature on applied economic modeling by estimating a structural model using the classical econometric framework as well as the Bayesian two-stage econometric framework. The performance of the two approaches is compared due to the small sample size and the best model is selected. Secondly, the study is used to get fresh evidence about the impact of human capital upon economic growth in the form of Bayes mean estimates along with their Highest Posterior Density Intervals (HPDIs) which give certain ranges of estimates within which the parameters are likely to lie. Annual data on the Pakistan economy ranging from 1965 to 2019 is used for the estimation of the model. Classical estimates are obtained using the efficient GMM method. Bayes mean estimates are simulated using a Bayesian two-stage procedure assuming multivariate normal-Wishart informative priors. Results show that the Bayesian econometric framework gives more precise parameters’ estimates as compared to the classical econometric framework, and hence, the Bayesian inference may be preferred over classical inference, especially in the case of a small sample size. The Bayes estimates show that a 1% increase in education capital and health capital causes raising economic growth by 0.0091% and 0.1778%, respectively, with a 0.95 probability that the estimates are likely to lie within the intervals 0.0085%–0.0097% and 0.1606%–0.1952%, respectively. Hence, human capital might be considered a vital factor to achieve economic growth in Pakistan. Moreover, health capital shows strong effects as compared to education capital in the process of economic growth.