Abstract. Migration of differently oriented grain boundaries was studied in the 22 = 5, 36.9~ tilt bicrystals of an Fe-3mass%Si alloy by the modified reversed-capillary technique. The principles of this method are outlined and discussed in connection with the application of multiple annealing of a single sample. It is shown that the errors introduced by both heating and cooling periods and by possible existence of an incubation period do not exceed the scatter of experimental data. A linear dependence between grain boundary migration velocity and driving force was found in most cases. The measured values of the product of grain boundary mobility and energy for individual grain boundaries differ substantially. The values of activation energy of migration of 332 kJ/mol, 392 kJ/mol, and 97 kJ/mol were found for the {012}, {013}, and (001)/(034) grain boundaries, respectively.