2023
DOI: 10.58997/ejde.2023.84
|View full text |Cite
|
Sign up to set email alerts
|

Growth and value distribution of linear difference polynomials generated by meromorphic solutions of higher-order linear difference equations

Yi Xin Luo,
Xiu Min Zheng

Abstract: In this article, we investigate the relationship between growth and value distribution of meromorphic solutions for the higher-order complex linear difference equations $$ A_n(z)f(z+n)+\dots+A_1(z)f(z+1)+A_0(z)f(z)=0 \quad \text{and } =F(z), $$ and for the linear difference polynomial $$ g(z)=\alpha_n(z)f(z+n)+\dots+\alpha_1(z)f(z+1)+\alpha_0(z)f(z) $$ generated by \(f(z)\) where \(A_j(z)\), \(\alpha_j(z)\) (\(j=0,1,\ldots,n\)), \(F(z)\) \((\not\equiv0)\) are meromorphic functions. We improve some previous res… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?