Lanthanum (La), one of the most active rare earth elements, promotes the growth of turfgrass roots. In this study, the mechanisms by which La influences bahiagrass (Paspalum notatum) growth were evaluated by the analyses of root growth, root activity, cell wall polysaccharide content, respiration intensity, ascorbic acid oxidase (AAO) and polyphenol oxidase (PPO) activity, the subcellular distribution of mitochondria, transcription in roots, photosynthetic properties, chlorophyll fluorescence parameters, and chlorophyll content. The application of 0.3 mM La3+ increased root activity, respiration intensity, AAO activity, and the number of mitochondria in the mature cells of bahiagrass roots. La could significantly improve the net photosynthetic rate, transpiration rate, and chlorophyll fluorescence of bahiagrass. Differentially expressed genes identified by high-throughput transcriptome sequencing were enriched for GO (Gene Ontology) terms related to energy metabolism and were involved in various KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including oxidative phosphorylation, TCA (Tricarboxylic Acid) cycle, and sucrose metabolism. These findings indicate that La promotes bahiagrass root growth by improving root activity, photosynthesis, and respiration, which clarifies the mechanisms underlying the beneficial effects of La and provides a theoretical basis for its use in artificial grassland construction and ecological management projects.