Sex steroids have important physiological actions, which are not limited to reproductive organs, in both females and males. They exert important physiological roles, including the regulation of somatotropic-liver axis, intermediate metabolism, or gender dimorphism. This is in part because the liver is a sex steroid-responsive organ where sex steroid-and growth hormone (GH)-dependent signaling pathways connect to regulate complex gene expression networks. Sex steroids can impact liver gene expression by a direct, through hepatic estrogen receptor (ER)α and androgen receptor (AR), or indirect mechanisms, by modulation of pituitary GH secretion and/or interaction with the GHR-STAT5b signaling pathway. Therefore, deficiency of sex steroid-and GH-dependent signaling pathways might cause a dramatic impact on mammalian liver physiology. In this chapter, we will focus our attention on main concepts and paradigms involved in the role and interplay between sex steroid-and GH-dependent signaling to regulate gene expression networks in the mammalian liver. A better understanding of how sex steroids and interactions with GH-STAT5b signaling pathway influence physiological and pathological states in the liver will contribute to improve clinical management of patients with disorders in body growth, development, and metabolism.Chemistry and Biological Activity of Steroids 2 androgen/AR [6,7,[21][22][23][24][25] or signaling pathways in adults causes a similar metabolic-like syndrome (i.e., fatty liver, adiposity, insulin resistance), a phenotype that might be ameliorated by E2/T or GH replacement. Therefore, the interplay between sex steroids and GH is clinically relevant because of its importance in the regulation of endocrine, metabolic, and gender-differentiated actions on the mammalian liver [33]. A better understanding of this complex sex steroid-GH interplay in physiological and pathological states will contribute to prevent health damage and improve clinical management of patients with growth, developmental, and metabolic disorders. In this review, we will summarize the role of sex steroid-and GH-dependent signaling pathways on liver gene expression.
The liver is as sex steroid-responsive organSex steroids can regulate liver gene transcription through direct and indirect mechanisms.