Anorectal malformations (ARMs) represent a complex group of congenital anomalies resulting from abnormal development of the hindgut, allantois and Mullerian duct resulting in complete or partial urorectal septal malformations. There is a wide variety of phenotypic expression, ranging from mild anorectal to very complex severe ARM with >75 % having other associated malformations. 50 % of cases are syndromic although many may have other associated anomalies. This suggests a genetic link but the genetics of ARM are highly complex with a number of candidate genes being identified. Many can be classified as "field defects" as a result of a complex set of genetic interactions. Patients with associated malformations can be classified into those with multiple congenital anomalies (non-syndromic), those with chromosomal abnormalities and those with non-chromosomal syndromic associations, also, those with non-chromosomal syndromes and the influence of environmental factors (e.g. drugs in pregnancy). Although much is not known about the aetiology of ARM, the weight of evidence points to genetic factors as major causes for the condition. In this review, we look at the chromosomal and genetic associations and their underlying signalling pathways, to obtain a better understanding of the pathogenetic mechanisms involved in developing ARM. The spectrum of ARM phenotypic expression probably results from involvement and crosstalk between a number of critical signalling systems involved in development of this region. As a result, it may be expressed as a "field developmental defect" with many associated abnormalities. The role of environmental factors in the development of ARM is probably less.