Deposition of high-quality Si-doped crystalline AlGaN layers, especially non-polar-grown AlGaN layers, is critical and remains difficult in preparing AlGaN-based light-emitting diodes (LEDs), as the Si-doping-induced variations of crystalline structures are still under exploration.
In this work, structural characterizations of Si-doped AlxGa1−xN layers were carried out by associating with examination of their carrier recombination behaviors in photoluminescence (PL) processes, to clarify the physical mechanism on how Si doping
controls the formation of structural defects in AlGaN alloy. The obtained results showed that Si doping induced extrinsic shallow donor states and increased the densities of point defects like cation vacancies. On the contrary, Si doping suppressed formation of line defects like dislocations
and planar defects like stacking faults with suitable doping concentration. These results may guide further improvement of UV-LEDs based on AlGaN alloy.