Post-weaning diarrhea in pigs is often caused by the F4 or F18 strains of enterotoxigenic Escherichia coli (ETEC). To evaluate interventions for ETEC, experimental infection via a challenge model is critical. Others have reviewed ETEC challenge studies, but there is a lack of explanation for the variability in responses observed. Our objective was to quantitatively summarize the responses and variability among ETEC challenge studies and develop a tool for sample size calculation. The most widely evaluated response criteria across ETEC challenge studies consist of growth performance, fecal consistency, immunoglobulins, pro-inflammatory cytokines, and small intestinal morphology. However, there is variation in the responses seen following ETEC infection as well as the variability within each response criteria. Contributing factors include the type of ETEC studied, dose and timing of inoculation, and the number of replications. Generally, a reduction in average daily gain (ADG) and average daily feed intake (ADFI) are seen following ETEC challenge as well as a rapid increase in diarrhea. The magnitude of response in growth performance varies, and methodologies used to characterize fecal consistency are not standardized. Likewise, fecal bacterial shedding is a common indicator of ETEC infection, but the responses seen across the literature are not consistent due to differences in bacterial enumeration procedures. Emphasis should also be placed on the piglet’s immune response to ETEC, which is commonly assessed by quantifying levels of immunoglobulins and pro-inflammatory cytokines. Again, there is variability in these responses across published work due to differences in the timing of sample collection, dose of ETEC pigs are challenged with, and laboratory practices. Small intestinal morphology is drastically altered following infection with ETEC and appears to be a less variable response criterion to evaluate. For each of these outcome variables, we have provided quantitative estimates of the responses seen across the literature as well as the variability within them. While there is a large degree of variability across ETEC challenge experiments, we have provided a quantitative summary of these studies and a Microsoft Excel-based tool was created to calculate sample sizes for future studies that can aid researchers in designing future work.