SiC is a wide bandgap semiconductor with many attractive properties. It has attracted particular attentions in the areas of power and sensor devices as well as biomedical and biosensor applications. This is owing to its properties such as large bandgap, high breakdown electric field, high thermal conductivities and chemically robustness. Typically, SiC homoepitaxial layers are grown using the chemical vapor deposition (CVD) technique. Experimental studies of SiC CVD have been limited to post-process measuring of the layer rather than in situ measurements. In most cases, the observations are presented in terms of input conditions rather than in terms of the unknown growth condition near the surface. This makes it difficult to really understand the underlying mechanism of what causes the features observed experimentally. With help of computational methods such as computational fluid dynamic (CFD) we can now explore various variables that are usually not possible to measure. CFD modeling of SiC CVD, however, requires inputs such as thermochemical properties and chemical reactions, which in many cases are not known. In this thesis, we use quantum chemical calculations to provide the missing details complementary to CFD modeling.We first determine the thermochemical properties of the halides and halohydrides of Si and C species, SiHnXm and CHnXm, for X being F, Cl and Br which were shown to be reliable compared to the available experimental and/or theoretical data. In the study of gas-phase kinetics, we combine ab initio methods and DFTs with conventional transition state theory to derive kinetic parameters for gas phase reactions related to Si-H-X species. Lastly, we study surface adsorptions related to SiC-CVD such as adsorptions of small C-H and Si-H-X species, and in the case of C-H adsorption, the study was extended to include subsequent surface reactions where stable surface products may be formed.
iv SammanfattningSiC är ett halvledarmaterial med stort bandgap som har många attraktiva egenskaper. Det har fått särskilt mycket uppmärksamhet inom kraftkomponenter och sensorer, men också för tillämpningar inom biomedicin och biosensorer. Detta beror på materialets stora bandgap, förmågan att klara höga elektriska fält, goda värmeledningsförmåga och kemiska stabilitet. Epitaxiska skikt av SiC för kommersiella tillämpningar tillverkas med hjälp av kemisk ångdepo-sition (Chemical Vapor Deposition, CVD). Experimentella studier av SiC CVD begränsas till mätningar som görs i efterhand, snarare än under processens gång. För det mesta görs observationer med utgångspunkt från processens ingångsvärden istället för från de okända tillväxtförhållandena vid ytan. Detta gör det svårt att verkligen förstå de underliggande mekanismerna för de observerade experimentella resultaten. Med hjälp av beräkningsmetoder, såsom computational fluid dynamics (CFD) kan vi utforska olika variabler som vanligtvis inte går att mäta. Dock kräver CFD-modellering av SiC CVD ingångs-data i form av termokemiska egenskaper och kemiska reaktion...