The role of magnesium ions in the differentiation of human promyelocytic leukemia HL-60 cells was investigated. When HL-60 extracellular magnesium was deficient (less than 0.01 mM), the total intracellular magnesium content and [3H] leucine incorporation rates decreased to 61 and 28%, respectively, on day 3. When the cells were treated with various inducers (100 nM 1 alpha, 25 dihydroxyitamine D3 (1,25(OH)2D3), 100 nM beta-all-trans retinoic acid (RA), 20 nM 12-o-tetradecanoyl phorbol-13-acetate (TPA), 1.25% dimethylsulfoxide (DMSO) and 30 nM aclacinomycin (AcM] in magnesium-deficient medium, the expression of differentiation-related phenotypes (nitroblue tetrazolium (NBT) reducing ability, nonspecific esterase (NSE) activity and monoclonal antibody, OKM1 binding activity) was almost completely inhibited. After a 2-day treatment with 100 nM 1,25(OH)2D3 in magnesium-deficient medium, the expression of differentiation-related phenotypes was restored by further incubation in the absence of inducer in standard magnesium medium (0.4 mM). These results suggested that magnesium deprivation inhibited the expression of HL-60 differentiation-related phenotypes but not their commitment to differentiation. These phenotypes were expressed without inducer in standard magnesium medium after a 2-day simultaneous treatment with 1,25(OH)2D3 and cyclohexamide (protein synthesis inhibitor) in magnesium-deficient medium, but not after simultaneous pretreatment with 1,25(OH)2D3 and alpha-amanitin (RNA synthesis inhibitor). Thus, it was suggested that the magnesium-requiring step in HL-60 cell differentiation is in protein but not mRNA synthesis. This conclusion is supported by the findings that changes in c-myc and c-fms mRNA levels in HL-60 cells treated with 100 nM 1,25(OH)2D3 in magnesium-deficient medium and those in standard magnesium medium were the same. In addition, dibutyryl cyclic adenosine monophosphate (dbc AMP) could restore expression of differentiation-related phenotypes inhibited by magnesium deprivation but not those inhibited by cyclohexamide, even though magnesium deprivation inhibited protein synthesis as much as did cyclohexamide. This suggests that magnesium-requiring step in HL-60 cell differentiation is different from that inhibited by cyclohexamide.