Traffic stress is one of the major abiotic stresses that limits grass growth in lawn fields. The severity of losses depends on several factors, including the number of events per season, the athletic field size, and the soil moisture content during the traffic incident. Trinexapac-ethyl (TE) is considered to influence plant tolerance to traffic stress. Therefore, the physiological responses of the wheatgrass (Agropyron desertorum L.) and tall fescue (Festuca arundinacea L. cv. Rebel) species to different levels of TE and traffic stress were investigated. A factorial experiment including combination of TE application and traffic stress treatments was performed based on a randomized complete block design (RCBD) with three replications in 2014 and 2015. The treatments, including traffic stress (traffic and nontraffic stress) and TE at three levels (0, 0.25, and 0.5 kg·ha−1), were applied once every 3 weeks. The simulated traffic stress was imposed using a Brinkman traffic simulator (BTS). The results showed that traffic stress reduced the turf quality, relative water content (RWC), total chlorophyll content, and antioxidant activity and increased electrolyte leakage (EL), soluble sugar content (SSC), and malondialdehyde (MDA) in both species. Conversely, TE increased the turf quality, RWC, SSC, and total chlorophyll and resulted in less EL and MDA in both species. Furthermore, TE application increased the superoxide dismutase (SOD) (EC 1.15.1.1), ascorbate peroxidase (APX) (EC 1.11.1.11), and peroxidase (POD) (EC 1.111.1.7) activities, especially under traffic stress conditions. TE application enhanced the resistance to traffic stress in both species by improving the osmotic adjustment and antioxidant activity.