Potassium Dihydrogen Phosphates (KDP) crystal has been studied since the early 1930s. It has many important applications, such as the electro-optic modulator, Q-switches, the ultrasonic transducer, the shutter for high-speed photography, frequency doubling and high power laser frequency conversion for fusion research. In response to these applications, the highquality KDP single crystals are required. The common method of KDP crystal growth is the lowering of the temperature of saturated KDP solution which is held in a cylindrical tank. The disadvantage of this method is the spontaneous appearance of crystalline clusters at the bottom of the tank which retard the growth of the main crystal. Since the 2010s, Sankaranarayanan and Ramasamy have proposed a new method of growing crystal by designing the Y-shaped solution tank. In this study, the KDP single crystals were grown by the Sankaranarayanan-Ramasamy (SR) method. These crystals have better quality, fewer defects, higher hardness and density, and especially material saving compared to ones from the conventional method.