The output gap, the difference between potential and actual output, has a direct impact on policy decisions, e.g., monetary policy. Estimating this gap and its further analysis remain the subject of controversial debates due to methodological problems. We propose a local polynomial regression combined with a Self-Exciting Threshold AutoRegressive (SETAR) model and its forecasting extension for a systematic output gap estimation. Furthermore, local polynomial regression is proposed for the (multivariate) OECD production function approach and its reliability is demonstrated in forecasting output growth. A comparison of the proposed gap to the Hodrick–Prescott filter as well as to estimations by experts from the FED and OECD shows a higher correlation of our output gap with those from those economic institutions. Furthermore, sometimes gaps with different magnitude and different positions above or below the trend are observed between different methods. This may cause competing policy implications which can be improved with our results.