Interspecific social learning is a main synchronizing mechanism that enables dogs to adapt to the anthropogenic niche. It is not known whether dogs in general possess the capacity of learning from humans or whether more recent selective events have affected their ability to learn from humans. We hypothesized that cooperative and independent working dog breeds may behave differently in a social learning task. Dogs (N = 78 from 16 cooperative and 18 independent breeds) had to detour a transparent, V-shaped wire mesh fence. The experiment consisted of three one-minute-long trials. The control condition did not include a demonstration. In the demonstration condition, the experimenter placed a reward in the inside corner by walking around the fence. Cooperative dogs reached the target significantly faster, while independent dogs did not detour faster in trials 2 and 3 after the human demonstration. Detour latencies were not associated with the keeping conditions and training level of the subjects. As we assembled both test groups from several genetically distantly related breeds, we can exclude the explanation that higher cooperativity emerged only in particular clades of dogs; instead, functional selection for particular working tasks could enhance capacities that affect a wide range of socio-cognitive traits in dogs.