Transmission fluctuation spectrometry (TFS) is a method for the analysis of particle size distributions based on the statistical fluctuations of a transmission signal. Complete information on the PSD and particle concentration can be retrieved by a special transformation of the transmission signal, whereby the expectancy of the transmission square (ETS) is determined after the signal has been subjected to a procedure of spatial and temporal averaging. By varying the averaging parameters over a wide range, a spectrum of ETSs is obtained and introduced into a linear equation system, which yields the PSD. In the experimental realization presented here, variable temporal averaging is realized in the frequency domain with a series of low pass filters at different cutoff frequencies while spatial averaging inevitably occurs as the particles pass through a focused Gaussian beam of finite cross section. Experimental results on spherical particles (glass beads) and non‐spherical particles (SiC) are presented. The PSDs are resolved in 30 intervals within a particle size range from 1–1000 μm, employing a modified Chahine inversion algorithm. So far, the measurements are limited to moderate particle concentrations. Some influences affecting the measurements, especially for higher particle concentrations, are discussed in detail.