Glycogen synthase kinase 3β (GSK 3β), a multifunctional serine and threonine kinase, plays a critical role in a variety of cellular activities, including signaling transduction, protein and glycogen metabolism, cell proliferation, cell differentiation, and apoptosis. Therefore, aberrant regulation of GSK 3β results in a broad range of human diseases, such as tumors, diabetes, inflammation and neurodegenerative diseases. Accumulating evidence has suggested that GSK 3β is correlated with tumorigenesis and progression. However, GSK 3β is controversial due to its bifacial roles of tumor suppression and activation. In addition, overexpression of GSK 3β is involved in tumor growth, whereas it contributes to the cell sensitivity to chemotherapy. However, the underlying regulatory mechanisms of GSK 3β in tumorigenesis remain obscure and require further in-depth investigation. In this review, we comprehensively summarize the roles of GSK 3β in tumorigenesis and oncotherapy, and focus on its potentials as an available target in oncotherapy.