Biosynthesis of (6 R )-5,6,7,8-tetrahydro-L-biopterin (H(4)-biopterin), an essential cofactor for aromatic amino acid hydroxylases and NO synthases, is effectively induced by cytokines in most of the cell types. However, human monocytes/macrophages form only a little H(4)-biopterin, but release neopterin/7,8-dihydroneopterin instead. Whereas 6-pyruvoyl tetrahydropterin synthase (PTPS) activity, the second enzyme of H(4)-biopterin biosynthesis, is hardly detectable in these cells, PTPS mRNA levels were comparable with those of cell types containing intact PTPS activity. By screening a THP-1 cDNA library, we identified clones encoding the entire open reading frame (642 bp) as well as clones lacking the 23 bp exon 3, which results in a premature stop codon. Quantification of the two mRNA species in different cell types (blood-derived cells, fibroblasts and endothelial cells) and cell lines showed that the amount of exon-3-containing mRNA is correlated closely to PTPS activity. The ratio of exon-3-containing to exon-3-lacking PTPS mRNA is not affected by differential mRNA stability or nonsense-mediated mRNA decay. THP-1 cells transduced with wild-type PTPS cDNA produced H(4)-biopterin levels and expressed PTPS activities and protein amounts comparable with those of fibroblasts. We therefore conclude that exon 3 skipping in transcription rather than post-transcriptional mechanisms is a major cause of the low PTPS protein expression observed in human macrophages and related cell types.