2023
DOI: 10.48550/arxiv.2302.01706
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

GTV: Generating Tabular Data via Vertical Federated Learning

Abstract: Generative Adversarial Networks (GANs) have achieved state-ofthe-art results in tabular data synthesis, under the presumption of direct accessible training data. Vertical Federated Learning (VFL) is a paradigm which allows to distributedly train machine learning model with clients possessing unique features pertaining to the same individuals, where the tabular data learning is the primary use case. However, it is unknown if tabular GANs can be learned in VFL. Demand for secure data transfer among clients and G… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?