Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Probabilistic programming languages (PPLs) are an expressive means for creating and reasoning about probabilistic models. Unfortunately hybrid probabilistic programs that involve both continuous and discrete structures are not well supported by today’s PPLs. In this paper we develop a new approximate inference algorithm for hybrid probabilistic programs that first discretizes the continuous distributions and then performs discrete inference on the resulting program. The key novelty is a form of discretization that we call bit blasting , which uses a binary representation of numbers such that a domain of 2 b discretized points can be succinctly represented as a discrete probabilistic program over poly ( b ) Boolean random variables. Surprisingly, we prove that many common continuous distributions can be bit blasted in a manner that incurs no loss of accuracy over an explicit discretization and supports efficient probabilistic inference. We have built a probabilistic programming system for hybrid programs called HyBit, which employs bit blasting followed by discrete probabilistic inference. We empirically demonstrate the benefits of our approach over existing sampling-based and symbolic inference approaches.
Probabilistic programming languages (PPLs) are an expressive means for creating and reasoning about probabilistic models. Unfortunately hybrid probabilistic programs that involve both continuous and discrete structures are not well supported by today’s PPLs. In this paper we develop a new approximate inference algorithm for hybrid probabilistic programs that first discretizes the continuous distributions and then performs discrete inference on the resulting program. The key novelty is a form of discretization that we call bit blasting , which uses a binary representation of numbers such that a domain of 2 b discretized points can be succinctly represented as a discrete probabilistic program over poly ( b ) Boolean random variables. Surprisingly, we prove that many common continuous distributions can be bit blasted in a manner that incurs no loss of accuracy over an explicit discretization and supports efficient probabilistic inference. We have built a probabilistic programming system for hybrid programs called HyBit, which employs bit blasting followed by discrete probabilistic inference. We empirically demonstrate the benefits of our approach over existing sampling-based and symbolic inference approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.